Widening ROBDDs with Prime Implicants

Neil Kettle ${ }^{\dagger}$, Andy King ${ }^{\dagger}$ and Tadeusz Strzemecki ${ }^{\ddagger}$
† University of Kent, Canterbury, UK
\ddagger Fordham University, New York, USA

TACAS ETAPS-2006

Reduced-Ordered Binary Decision Diagrams

- ROBDDs have numerous applications in model checking, program analysis and abstract interpretation
- ROBDDs are remarkably tractable but problematic Boolean functions arise whose representation is excessive for any variable ordering
- Minimisation by variable reordering then is a limited solution, and this motivates the need for approximation

乙 Preliminaries

BDDs of $f=\neg c \wedge((\neg a \wedge((d \wedge \neg e) \vee(\neg b \wedge \neg d))) \vee(b \wedge(d \leftrightarrow \neg e)))$ and $g=\neg f$

- A dense over-approximation of f can be obtained in terms of implicants of g
- A cube p is an implicant of g if $p \models g$, thus $(a \wedge \neg b)$ is an implicant of g

- A dense over-approximation of f can be obtained in terms of implicants of g
- A cube p is an implicant of g if $p \models g$, thus $(a \wedge \neg b)$ is an implicant of g
- Furthermore, $a \not \vDash g$ and $\neg b \not \vDash g$, thus $(a \wedge \neg b)$ is a prime implicant of g

- The cube $p=(b \wedge \neg d \wedge \neg e)$ is an implicant of $(g \wedge a \wedge c),(g \wedge a \wedge \neg c)$, $(g \wedge \neg a \wedge c)$ and $(g \wedge \neg a \wedge \neg c)$
- The cube p is thus an implicant of g
- The implicant p is prime because
- $(\neg d \wedge \neg e) \mid \vDash g$ and
- $(b \wedge \neg e) \not \vDash g$ and
- $(b \wedge \neg d) \not \vDash g$

- The cube $p=(b \wedge \neg d \wedge \neg e)$ is an implicant of $(g \wedge a \wedge c),(g \wedge a \wedge \neg c)$, $(g \wedge \neg a \wedge c)$ and $(g \wedge \neg a \wedge \neg c)$
- The cube p is thus an implicant of g
- The implicant p is prime because
- $(\neg d \wedge \neg e) \not \vDash g$ and
- $(b \wedge \neg e) \not \vDash g$ and
- $(b \wedge \neg d) \not \vDash g$
- The cube c is an implicant of $(g \wedge a \wedge b)$, $(g \wedge a \wedge \neg b),(g \wedge \neg a \wedge b)$ and $(g \wedge \neg a \wedge \neg b)$
- The cube c is thus an implicant of g
- The implicant c is prime since true $\not \vDash g$
- The set of all prime implicants is $\operatorname{primes}(g)=\{c,(d \wedge e),(a \wedge \neg b),(b \wedge \neg d \wedge \neg e)\}$
- Since
- $c \vDash g$, it follows that $f=\neg g \models \neg c$
- $(d \wedge e) \models g$, it follows that $f=\neg g \models \neg(d \wedge e)$
- $(a \wedge \neg b) \vDash g$, it follows that $f=\neg g \models \neg(a \wedge \neg b)$
- $(b \wedge \neg d \wedge \neg e) \models g$, it follows that $f=\neg g \models \neg(b \wedge \neg d \wedge \neg e)$
- This leads to a family of approximations (widenings)

$$
\nabla_{k}(f)=\bigwedge\{\neg p \mid p \in \operatorname{primes}(\neg f) \wedge\|p\| \leq k\}
$$

where $\|p\|$ denotes the number of propositional variables in p

- $\nabla_{1}(f)=f_{1}$ has 16 truth assignments and 1 node
- $\nabla_{2}(f)=f_{2}$ has 9 truth assignments and 5 nodes
- $\nabla_{3}(f)=f$ has 7 truth assignments and 8 nodes

$\square_{\text {Approximating with Prime Implicants }}$

- $\nabla_{1}(f)=f_{1}$ has 16 truth assignments and 1 node
- $\nabla_{2}(f)=f_{2}$ has 9 truth assignments and 5 nodes
- $\nabla_{3}(f)=f$ has 7 truth assignments and 8 nodes
- Observe $f \models \nabla_{3}(f) \models \nabla_{2}(f) \models \nabla_{1}(f)$

$L_{\text {Approximating with Prime Implicants }}$

- $\nabla_{1}(f)=f_{1}$ has 16 truth assignments and 1 node
- $\nabla_{2}(f)=f_{2}$ has 9 truth assignments and 5 nodes
- $\nabla_{3}(f)=f$ has 7 truth assignments and 8 nodes
- Observe $f \vDash \nabla_{3}(f) \vDash \nabla_{2}(f) \vDash \nabla_{1}(f)$
- Generally
- Tuneable: ∇_{k} is never less precise than ∇_{k-1}
- Predictable: if $f_{1} \models f_{2}$ then $\nabla_{k}\left(f_{1}\right) \models \nabla_{k}\left(f_{2}\right)$
- Swings both ways: $f \models \nabla_{k}(f)$ and $\neg \nabla_{k}(\neg f) \models f$
- Ordering independent: ∇_{k} approximates f rather than its representation

Implementation

- The complexity of finding the shortest prime implicant is in $G C\left(\log ^{2} n, c o N P\right)$-complete
- Coudert and Madre ${ }^{1}$ proposed an algorithm for enumerating all primes whose complexity is related to the size of an ROBDD encoding of the primes and not the number of primes
- We overlay the algorithm with a constraint which ensures that the number of propositional variables in any prime does not exceed a given k
- This also reduces the size of all intermediate ROBDDs
${ }^{1}$ O. Coudert and J. C. Madre, "A New Graph Based Prime Computation Technique", in Logic Synthesis and Optimization, Kluwer, pages $33-57,=1993$ =

- Experimental Results

Experimental Results

ID		Approximation					
size	minterms	size	Ratios minterms	Time	Notes		
		8382	3.40×10^{14}	0.32	1.83	4.61	q: 0.94
Ravi	pair \#177	pair \#182	9711	1.47×10^{15}	0.29	1.81	6.32
q: 0.84							
	mm9b \#420	933	1.88×10^{9}	0.01	1.16	10.85	q: 0.75
	mm92 \#421	722	1.88×10^{9}	0.01	1.16	11.96	q: 0.84
	s9234 \#288	15	5.68×10^{22}	0.01	1.58	1086.12	q: 0.88
	s9234 \#488	11	2.89×10^{22}	0.01	1.49	2321.68	q: 0.92
Shiple pair \#177	8385	1.72×10^{15}	0.32	10.85	4.86	q: 0.92	
	pair \#182	9714	8.06×10^{15}	0.29	9.93	6.35	q: 0.81
	mm9b \#420	933	1.88×10^{9}	0.01	1.16	12.39	q: 0.75
	mm92 \#421	722	1.88×10^{9}	0.01	1.16	13.10	q: 0.84
	s9234 \#288	15	5.68×10^{22}	0.01	1.58	1057.62	q: 0.87
	s9234 \#488	11	2.89×10^{22}	0.01	1.49	2562.30	q: 0.92
Our	pair \#177	11027	2.06×10^{14}	0.42	1.11	0.58	k: 5
	pair \#182	7301	8.32×10^{14}	0.22	1.03	0.85	k: 6
	mm9b \#420	44334	1.68×10^{9}	0.47	1.02	6.38	k: 12
	mm92 \#421	39718	1.69×10^{9}	0.41	1.05	8.19	k: 11
s9234 \#288	75	3.64×10^{22}	0.01	1.01	20.36	k: 7	
s9234 \#488	103	1.96×10^{22}	0.01	1.01	47.53	k: 6	

- Experimental Results

Experimental Results

- Experimental Results

Experimental Results

Conclusions

- The approximation appears to be competitive with current existing methods
- By increasing k until a timeout is exceeded, we obtain a so-called anytime approach to ROBDD approximation
- Details are provided in the paper as to how prime implicants can be used to widen for time as well as space

