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Abstract— Detecting symmetries has many applications in logic pair fl;,— 02,1 = fle;—1,2,—0 Where flo,qo;cp =
synthesis that include, amongst other things, technology ap-  f(zy,... 2, 1,0, 241, ... s @j—1,b,2j41,...,2p). This no-
ping, deciding equivalence of Boolean functions when the put tion of symmetry had been generalized [13], [15] to the

correspondence is unknown and finding support-reducing bond . . .
sets. Mishchenko showed how to efficiently detect symmetse symmetry types listed in T‘f"ble | whergl, , at.)brev'lates
zi—a,z;—b- TNESE Symmetries can be categorized into two

in ROBDDs without the need for checking equivalence of all /
co-factor pairs. This work resulted in practical algorithms for types depending on whether or not a negated co-factor occurs
detecting classical and generalized symmetries. Both thdassical in the relationshipTy, . .., Ts coincide with those of Zhanet

and generalized symmetry detection algorithms are monolitic 5 [12] whereasT: Ti» correspond to the'T’ T
in the sense that they only return a meaningful answer when h Do t12 Lyeeen 106
types in the notation of Zhanet al.

they are left to run to completion. In this paper we present
anytime algorithms for detecting both classical and gener&ed

symmetries, that output pairs of symmetric variables until a I: Generalized Symmetry Types
prescribed time bound is exceeded. These anytime algorithen
are complete in that given sufficient time they are guaranteg Positive Co-factor relations | Negative Co-factor relations
to find all symmetric pairs. Anytime generality is not gained at 7T, — T —
the expense of efficiency since this approach requires onlyery T%r,i,,,j (f) <= flio=floa T?%,,j (f) = fluo="flos
modest data structure support and offers unique opportunites T%r (f) = floo=fha T%-,.r. (f) = floo=~fl1a
for optimization so the resulting algorithms are competitive with () <= floo=flox | Ty " (f) <= floo=~flox
their monolithic counterparts. T,7%(f) <= flio=fhia | T (f) <= flio=—fli1
T, T _ Ty &j _
Index Terms—Logic Synthesis, ROBDDs, Symmetry Tglm(f) < Sloo =1l Tlmlim(f) < floo="flo
T (f) <= floa=fli1 | Ty ' (f) <= floa=~flia1
|. INTRODUCTION We previously presented an anytime algorithm for symmetry

YMMETRY detection has been important since the da detection for Boolean functions represented as ROBDDs [16]

of Shannon [1] who observed that symmetric functions N "’."90”“‘”.‘ sou_gh_t to address some of the drawbacks
associated with existing methods that have been proposed

have efficient switch network implementations. Symmetry d?or ROBDDs. One oroblem that we have found is that the
tection is no less important today and knowledge of symmetri™ " e P .
variables has applications in logic synthesis [2], [3] - running time of these algorithms [12], [17] can exceed 12
. bp h fogic sy o hours on some ROBDDs of less than a million nodes. Variable
0gy mapping [4], [5], combining tech_nology-md_ependeml anreordering can reduce the size of an ROBDD and thereby
technology-dependant stages of logic synthesis [6], datpc reduce the cost of symmetry detection. However, it is impru-
support-reducing bound sets [7], ROBDD minimization [8] ' '

[9] and detecting equivalence of Boolean functions when tﬁient to rely on variable reordering alone to make symmetry

input correspondence is unknown [10]—[12] d%tection tractable since variable reordering techniquees
P P ' themselves be prohibitively expensive and of course, eften a

The challenge in symmetry detection is to find eﬁ.'?eordering,there is no guarantee that the size of the ROBDD

cient algorithms for detecting all symmetric variablesrpai_. . . )
. . o will actually be smaller. In fact even improving the variabl
(x;,z;) of a given Boolean functiorf (x; . ..z, ), that is, find S . . .
. ordering is NP-complete [18], and is also inapproximable
all pairs (z;,x;) such thatf(zo,..., ..., 2j,...,Tn) = L o .
It . N 2,). The intuition being thatf re within a constant factor [19] (that is, if for every given
07w 2By e v 3y ) 9 e > 0, there exists a polynomial-time algorithm for reordering

mains unc_hanged undgr the switching of the va}rlabies variables so as to obtain an ROBDD whose size is not larger
and z;. This symmetry is formally known as the first-order

. . than1 + e times that of the minimal size, then it follows that
classical symmetry, or the non-skew non-equivalence sym

) : = NP). From the perspective of algorithm design, there
try [13]. It can be shown from Boole’s expansion theorem [1 elre at Ie)ast WO wayg foerard' develgp a faster gymmetry
that this is equivalent to checking equality of the co-fact :

0 : . . .
detection algorithm; recast symmetry detection so thatit c
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devise an efficient algorithm that incrementally detecisspef that are conventionally written as Boolean formulae de-
symmetric variables until some given time bound is exceeddihed over a variable seK = {z1,...,z,}. The satisfy-

Thus far, the only incremental algorithms that have beewmunt of an n-ary Boolean function f is defined as

proposed for symmetry detection in ROBDDs are those basefl| = [{(b1,...,bn) | f(b1,...,bn) = 1}| [24]. The (Shan-

on naive co-factor computation [9], [20], but alas, this amon) co-factor of a functionf w.r.t a variable z; and
proach is inefficient. The algorithm of Pané# al. [8] can a Boolean constanb € Bool is defined by f|,,—» =

be considered to be incremental and does not require ¢4=1,...,z;—1,b,2:1,...,Z,). Multiple variable co-factors,
factor computation. Instead, the algorithm is formulatad idenotedfwiﬁbly,,,,mi”#bm, can be defined inductively as
terms of dynamic variable reordering [21]. This approach, = f, fj = fj—1le;. —b, @Nd floy b1, wpmebn = fm-

is incomplete for the purposes of symmetry detection, sinceA BDD is a rooted directed acyclic graph where each
the algorithm may not detect all symmetric variable paiigiternal node is labeled with a Boolean variable Each

if variable reordering is prematurely terminated. The mogiternal node has one successor node connected via an edge
efficient algorithms proposed thus far for symmetry detecti labeled 0, and another successor connected via an edgedabel
[12], [17] are monolithic in that they provide no opportynit 1. Each leaf node is either the Boolean constant 0 or 1. The
for early termination, and yet can sometimes require siganifi  Boolean function represented by a BDD can be evaluated for
runtime. In this paper we present a class of efficient anytinaegiven variable assignmefit:y — b, ..., x, — b,} where
algorithms for classical and generalized symmetry deiacti b, ¢ Bool by traversing the graph from the root, taking the 1
For clarity, we summarize our contributions as follows: edge at a node when the variablgis assigned to 1 and the 0

« The paper presents an incremental, anytime algorithm fedge when the variable; is assigned to 0. The leaf reached
first-order classical symmetry detection. Even considgrinn this traversal indicates the value of the Boolean funrctio
the complexity of all the underlying set operations, théor the assignment. An OBDD is a BDD with the restriction
algorithm is inO(n3+n|G|+|G|*) wheren is the number that the label of an internal node;, is always less than the
of variables andG| the number of nodes in the ROBDD.label of any internal node reachable via its successoys,

« The paper explains how an incremental anytime approaitfat is,i < j. An ROBDD is an OBDD with the additional
offers special opportunities for optimization, in thatszla constraint that the two successor nodes of any internal node
sical assymetry/symmetry sieves can precede the algepresent different Boolean functions, and that distintgrinal
rithm and assymetry/symmetry propagation techniquesdes also represent distinct Boolean functions. Noteathwt
can be inserted into the main loop of the algorithm. internal node of an ROBDD is itself the root of an ROBDD.

« The paper proposes a computationally lightweight tech- Each of the 12 predicate®; " (f) of Table 1 asserts
nique that often improves the proportion of symmetries symmetry property of a Boolean functioh where the
found early on in the operation of the algorithm. predicateT’;”""* (f) is interpreted as stating that the Boolean

« The paper shows how to refine the anytime algorithfanction f is T;-symmetric in the variable paifz;,xy).
so as to detect generalized symmetries. An algorith8trictly, an ROBDDyg is not a Boolean function but rather a
for simultaneously detecting all, . .., T1o-Symmetries representation of one. Therefore to assert symmetry plieper
is presented which resides @(n? + n2|G| + |G|*). This of the functionf that underlies a given ROBDB, we define
algorithm is underpinned by new symmetry relationships;”*“* (g) to hold whenevefl”*“*(f) holds. Moreover, we
which take the form, that iff,, ™ (f) and T,7*(f) shall say that a ROBDD is T;-symmetric in the variable pair
hold thenZ"*/(f) holds whereT,,, T, and T, denote (x;,zy) iff T,7"*(g) holds, and dually is T;-asymmetric in
one of thel2 generalized symmetry types. Only a fewthe variable paifz;, =) iff 7,/"**(g) does not hold.
of these transitivity results have been previously rembrte
[22] and these results could well find application in other
symmetry detection problems [23].

« The paper shows that symmetry detection does not re-Early work on detecting symmetric variables in Boolean
quire the creation of intermediate ROBDDs and thdtinctions has focussed on the computation of co-factoispair
anytime generality need not compromise efficiency. that is alln? — n possible co-factors, where is the number

The remainder of this paper is structured thusly: Section of variables. Symmetry is detected by checking their equiva
presents the necessary preliminaries and Section Il garvéence [20]. The use of ROBDDs to represent Boolean functions
the related work. Section IV presents an anytime symmenables not only the efficient computation of co-factord, bu
try detection algorithm for classical symmetries. Section also equivalence to be checked in constant time. However,
explains how the multi-pass nature of the algorithm can Wepeated co-factoring involves the creation and deletibn o
exploited with asymmetry/symmetry propagation. Sectidn \many intermediate ROBDD nodes and for very large ROBDDs
extends the anytime approach to the detection of genedali;_tbis overhead can be prohibitive. This method is often reter
symmetries. Section VII quantifies the cost of anytime synto as the naive method [20]. Méller, Mohnke and Weber [20]

I11. RELATED WORK

metry detection and Section VIII concludes. thus advocate the use of preprocessing algorithms — sieves
— that detect pairs of asymmetric variables. These lingae-t
Il. PRELIMINARIES sieves significantly reduce the number of co-factor paigs th

In this paper we consider completely specified Booleareed to be computed. In general, however, methods built upon
functions f : Bool® — Bool where Bool = {0,1} such sieves still require naive co-factor computationt 1,



calls to the standard co-factoring algorithm [24] the coempyy  first present Algorithm 1 which is our simplest algorithm
of which is in O(|G] 1g |G]). for anytime symmetry detection. In the section that fol-

Because of the cost of repeated co-factoring, many sytows, we build on Algorithm 1 by incorporating optimiza-
metry detection methods endeavor to avoid naive co-fact@mms that exploit its anytime nature. Algorithm 1 takes
computation. Molleret al. [20] and Pandal al. [8] detect all as input an ROBDDf and returns a set of index pairs
symmetries between variables adjacent in the variablerorde = {(i,7) | 777" (f)} that represent the set
with an algorithm inO(|G|). Pandeet al. [8] modify Rudell's of Tj-symmetric variable pairs. The algorithm is com-
dynamic variable reordering algorithm [21] to detect symmeosed of two separate procedurés:ndAsymmetry and
tries between variables that become adjacent when one of ReoveAsymmet ry. Fi ndAsymet ry(f) performs two
variables is repositioned in the ROBDD variable orderinglepth-first traversals over the ROBDP to detect pairs of
Symmetric variables are then grouped, and any subsequeariables(z;,z;) that are provably asymmetric with respect
reordering that is applied is required to preserve a contigu to 7;. RenoveAsymet r y(f,, C) filters a set of variable
variable ordering within each group. This approach to synndices C' whose symmetry relationship with variabig is
metry detection does not require naive co-factor comjmutat unknown to return the sef’ C C that represents those
but there is no guarantee that all symmetries will be foundvariablesz; that areT’-symmetric withz;.
variable reordering is prematurely terminated.

The algorithm of Mishchenko [17] can getect all symmetrig|gorithm 1 SymmetricPairs()
variable pairs in a ROBDD vylt_h JugD(|G| ) set operations. — ndAsymetry (/)
Zero suppressed binary decision diagrams (ZBDDs) [25] areg .
used to compactly represent a collection of sets of symmetrifor i =1 ton — 1 do
variable pairs. However, since each set can potentiallyabon C—{jl@j)&AusS) ni<j}
O(n?) elements one would expect Mishchenko’s algorithm D < RemoveAsymmetry(f, i, C)
to at least reside ir0(n?|G|*) and possibly even a higher 4 < AUAG:D. (L) [ L€ C\ D}

) . . S — SU{(i,1),(1,i) |l € D}

complexity class when all set operations are considered. return S

The generalization of symmetries is a recent developmeént

and has received much attention [12], [13], [15], [26]. Thigpe ca|i toFi ndAsymmet ry initializes the set of asymmetric
move to generalized symmetries has inevitably brought with, 5 i3 ple pairsA such thatA € {(i,5) | —~T7"™(f)}

the requirement for efficient algorithms to compute theml[12re set ¢ is constructed of indices for those variables
[26]. It is straightforward to extend the naive approach Qfpgse Ti-symmetry relation withz; is as yet undeter-

symmetry detection to all generalized symmetries in Tablelined. The set off,-symmetric variablesD returned from
with only a worst-case twofold increase in the amount of WorllﬁermveAsymret ry and its complement’ \ D are used to

required. This. is because classical symmetry detection (giands and A respectively. The main loop only requires
quires calculating the co-factof$;; 12,0 andflz;—o0.z;—1 4, _ 1 iterations becaus€ — ( wheni — n. The algo-

whereas generalized symmetries over two variables only tgnm that initializes A is justified by lemmata that detail
quire the co-factorg|s; —o,z;—0 and flu;—1,0;—1 10 be addi- pq\ 7, _symmetric variables place structural constraints on
tionally computed. (The amount of work required to compuigoppps [9][lemmata 5 and 6]. We state these lemmata below
an equivalence check, such #8.—o.s,—0 = fleie12;-1,  for completeness:
is negligible and a check that involves negation, such as
flaic0,0;0 = fle;—1,0,—1, is also inO(1) for ROBDDs Lemma 1. If an ROBDD f over a set of variables
with complement edges [27].) This twofold increase in workZ1, - -, x} is T1-symmetric in the pai(z;,z;) andi < j,
is disproportionate to the twelvefold increase in the numbthen every ROBDD rooted at a node labeledmust contain
of symmetries that can be detected, however, the overhéatiode labeled:;.
of repeated co-factoring is still prohibitive. Consequignt
symmetry detection methods for generalized symmetries h )
progressed along the same lines as those for classical sym Sr’w
tries: the algorithm of Zhangt al. [12] mirrors the design of
Mishchenko [17], but is altered to perform multiple passas f
each of the different symmetry types. Hence, the algoritfim bemmata 1 and 2 provide two conditions under which asym-
Zhanget al. has the same worst-case complexity of that ghetry can be observed. For any given node labelede can
Mishchenko, disregarding constant factors. compute the set of all variables that appear in a ROBDD
An interesting thread of related research focusses on fhét is rooted at that node, and any variable not appearing in
problem of extracting symmetries from Boolean functiorat ththis set is necessarily;-asymmetric withz;. Furthermore,
are not represented as ROBDDs [23], [28]. for any given node labeled;, we can compute the set of
all variablesz; that appear orall paths from the root of the
ROBDD to the node, and any variable not appearing in this set
is T1-asymmetric withz;. These asymmetry conditions can
In this section we describe our anytime approach tme checked together in just two depth-first traversals of the
classical symmetry detection. For pedagogical purposes ROBDD, each traversal takin@(n|G|) time since each node

Lemma 2. If an ROBDD f over a set of variables
..., 2y} is Ty-symmetric in the paifz;,z;) andi < j,
every path from the root gfto a node labeled:; must
visit a node labeled;.

IV. ANYTIME SYMMETRY DETECTIONALGORITHM



is visited singly and at most variables need be considered.

The symmetry relations between the variables are computed
in a series of passes. The validity of this decomposition is
justified by the proposition:

Proposition 1. An ROBDD f over a set of variables
{z1,...,z,} is Ty1-symmetric in the paifz;, z;) andi < j iff
1) every ROBDD rooted at a node labeled is 13-
symmetric in(z;, z;) and,
2) every path from the root of to a node labeled; passes
through a node labeled;.

Proof.
o Consider thef direction.
— Sincef is T1-symmetric in the variable paitc;, ),
f(bl7 1, bQ, O,bg) = f(bl7 0, bg, 1, bg) for all b; €
Bool*"!, by € Bool’~*"! and b; € Bool* .
Let g = f(by,x,...,z,) henceg

1: The ROBDDf for the formula(zy A x2) V x3

remove those indiceg € C which violate the first condition

of the proposition, that is, thosg € C for which f is T3-

o 0me asymmetric in the pait(z;,z;). This is precisely the role
z;—0,x;—1-

— Suppose for the sake of a contradiction that theloé Renongsym‘ret ry(f’l’c) in_Algorithm 2. whe_re the
exists a path from the root to a node IabeleBarametelz delineates the variable under consideration in the

2; that does not pass through a node labeldfSS- The algorithm uses the functiomdex(f) which merely
x] Thus, let g — f(by,0,bs,x; o) = returns the index of the root of an ROBDR that is,q if the
7 l - » Y [t R et 1] - - )
f(b1,1,by, 2, ...,x,) for someb; € Bool'~! and root of f is labeleds;.
by € Bool/~*~!. Thus gl,,—o(b3) = glz;—1(bs)
for all by € Bool"™7. Hencegl,,—o = glz,—1

ri—1lx;—0 —

Algorithm 2 RemoveAsymmetryf; i, C)

which is a contradiction since is reduced. if C =0V f=trueV f = false then
. . . . . return C
. Cons@(_ar theonly-if direction, arguing by the con- j — index(f)
trapositive. Suppose there exists; € Booli~!, if 5 >4 then
b, € Booll~*"! and by € Bool”J such that return C

b1,1,b2,0,bs) = 1 and f(by,0,bs,1,bs) = 0. Let  else ifj =i then
f(b1,1,b5,0,bs) f(b1,0,b5,1,b) return RenoveAsymet ryvar (f|z,—o, flz;—1,C)

g=f(by,zi,...,2p). else
— Supposeg|s;—0 F# glz;—1. Thus g is labeled C «— RenoveAsymet ry(flz;—o,i,C)
x;, hence there exists somg, and bs such that return RenmoveAsymmet ry(fle;—1,i,C)
g,,Ei<_1(b2,O,b3) =1 andgxﬂ_o(bg,l,bg) =0
as required. An index j should be removed fromC whenever
— Suppose|,,—o = gl,—1. Henceg is not labeledr;.  flo;—0,0;1 # floy—1,2;—0. This Ti-asymmetry check is
Leth = g(0,ba, x;,...,2,) = g(1,ba, x;,...,x,). satisfied if there exista € Bool’~' andb € Bool’~'~' such
Observeh|,,—g # hls;—1 since hl,,—o(bs) # that f(a,0,b,1,zj41,...,2n) # f(a,1,b,0,2j11,...,25)
h|.,—1(bs) as required. where i refers to the position betweem and b. If
The f(bi1,1,bs,0,bs) = 0 and f(b1,0,by, 1,by) = 1k =index(f), fo = flo,—o @nd fi = fls,—1 then show-
case follows analogously. O ing f(a,0,b, 1, zj41,...,20) # f(a,1,b,0,2541,...,7n)
amounts to detecting eithefy(a,0,b,1,z41,...,2,) #
One may wonder if the second condition in the propositiofy(a,1,b,0,z;41,...,2,) Of fi(a,0,b,1,z41,...,2,) #
is actually necessary. Figure 1 illustrates that this diowi f,(a,1,b,0,2;11,...,,) for some (smallerh € Bool*~2.

cannot be relaxed. Observe that the variable pairx3) is This recursive reduction explains the recursive nature of

T1-symmetric in the ROBDD rooted at,, moreover the pair RenbveAsymmet ry. The testj > i implements a form of

(x2,x3) is Ty-symmetric foreveryROBDD rooted at a node early termination since ifi > i there is no opportunity for

labeledzs. However, the paifz2, x3) is T1-asymmetric in the removing any index fronC. The leavesrue andfalse also

ROBDD f, and indeed there exists a path from the rooff of trigger early termination.

to the noder; that does not visit a node labeled. At the heart of RenbveAsymetry is a call to
The proposition allows exhaustive checking to be decorRenoveAsymmet ryVar (f|.,—o, f|z;—1,C) which is ap-

posed into a series of passes; one pass for each varigilled to an ROBDD whose root is labeled with the variable

z;. Observe that when the loop is entered in Algorithm L;,. When a call toRenobveAsynmmetryVar is initially

Fi ndAsymet ry has already added all the pailisj) to A encountered, its first and second parameterg@re g|.,—o

such that there exists a path from the root to a node labeld g, = g|.,—1. At this point, it remains to search for

x; which does not pass through a node labetedAn index someb € Bool’~*~! such thatgy(b,1,zj41,...,2,) #

j for such a pair cannot arise i6'. Hence it remains to g1(b,0,z;11,...,2,). This is in turn realized by showing




Algorithm 3 RemoveAsymmetryVai, g1, C) V. OPTIMIZED ANYTIME SYMMETRY DETECTION

if go = true V go = false then In this section we propose a series of optimizations for
J = Algorithm 1. The resulting refined algorithm retains the in-
els‘i_ index(go) cremental nature of the original algorithm, and shows how in
if gjl — true vggl — false then crementality can be exploited by several optimizationseseh
7 — 00 optimizations seek to reduce the size of theetand hence
else the running time of the caRenoveAsymet ry(f,:,C), by
i g‘;anvdjtx:@;):  then enriching the setsd and S on-the-fly before, and between,
return O iterations of the main loop. The symmetry sieve algorithms
else if j = r then proposed by [9], [10], [20] suggest a way to refine the skts
(1, 900, go1, 910, g11) <= (4, golz,; 0, golz; 1, g1lz,—0, 1]z, 1) @andS before the loop is entered. Furthermore, it is possible to
else if j <r then ‘ take advantage of the transitivity of tH&-symmetry relation
els(é,goo,gm,gm,gu%— (5, gola; 0, gola; 1, 91, 91) to add further .pairs toA .ar.lds'* between iterations. The
(1, 900, Gor, 910, g11) — (s G0s G0, Giler—0s Giler 1) novelty is not in the optimizations themselves_, but rather
if go1 # g10 then that an anytime reformation of symmetry detection naturall
C—C\{l} accommodates various useful optimizations [9], [10], [A®le
C — RenmoveAsymmet ryVar (goo, 10, C) optimized algorithm listed in Algorithm 4 takes an ROBDD

retumn RempveAsymmet ryvar (goi, g1, C) f and returns the sef of T}-symmetric variable pairs.

Algorithm 4 OptimizedSymmetricPairg]
) A’ « Fi ndAsynmret ry(f)
either goo(b, 1, 41, .., 2n) # g10(b,0,2j41,...,@,) OF M — Sati sfyCounts(f)
g()l(b, 1, Tjt1y--- ,Jﬁn) 7& 911(b7 0, Tjt1y--- ,Jﬁn) for some for i =1ton do

(smaller)b € Bool’=“=2 where goo = go for j=i+1tondo

fI:i+1<—01 glO = . . .
f M M(j) th
91leisi—00 go1 = golz;i—1 AN g11 = Gile; 1. A ! A’(f)—il’u(?i j()an(j 0}
recursive formulation ofRenbveAsymmetryVar can be (4, 5) — Fi ndAd y’mrfet’ry(

obtained from this recursive reduction. When bagih and (A,S8) — (AUA", S\ A)
g1 are leaf nodes, no further reduction can be applied andor ¢ =1ton—2do

RenmoveAsymmret ryVar terminates. (4,5) — Symmetryd osur e(4,5)
. ’ C—{jl@j4) ¢(AUS) Ni+1 < j}

The three cases in Algorithm 3 are required to accommodate D « RemoveAsymmret ry(f,i, C)
the reduction inherent in ROBDDs. Thg = r condition A—AU{(z,1),(l,9) | L€ C\ D}
selects the case whep and ¢g; are labeled with the same retfr;_ gu{(z,l),(l,z) |1€ D}
variable z;. In this case we computgy|,,1 and gi|z;—o
and check thago|.,—1 # g1]2,—o- If the check is satisfied
is removed fromC. Whenj < r the co-factorg:|,,—1 = g1
hence the asymmetry cheg|.,—1 # 9g1].,—o reduces to
golz;—1 # g1. If this check is satisfied is removed fromC.
The r < j case is analogous except thais removed.

)

Sati sf yCount s(f) returns a mapping/ from variable
indices to a natural number that can be used to distinguish
pairs of T1-asymmetric variables, that is, #/(i) # M(j)
then (z;,z;) are Ti-asymmetric. Fi ndAdj Symmet ry(f)
returns two sets of index pairsA and S where
Caching can be applied to ensure that the functioiii,s) | 77" "™ (f)Aj=i+1} C AC{(,5) | -1, (f)}
RermoveAsymmet r yVar is not called twice on the same pairand S = {(i, ) | T{"" (f) Aj =i + 1}. Since the procedure
of ROBDDs gy and g;. Moreover, the complexity of a call to Fi ndAdj Symmet ry finds all adjacentT’;-symmetric and
RenmoveAsymet ryVar is in O(|G|?) if C is represented T;-asymmetric pairs, the number of loop iterations can be
as an array ofn Booleans. Then computing' \ {/} is in relaxed fromn — 1 to n — 2. Synmet ryd osur e(44,.51)
O(1), as is the tesC = () when C is augmented with a takes as input two setd; andS; of variable pairs known to
counter to recordC|. Overall,RenoveAsynmet r yVar can be Tj-asymmetric andl;-symmetric respectively. Then, by
only be invoked a total ofG| times from within Algorithm 1, reasoning about transitivity, a pair of sét,, S ) is computed
thus RenoveAsymet ryVar contributes O(|G|?) to the which are T;-symmetric and T;-asymmetric such that
overall running time. Thes—1 calls toRenbveAsymmetry As O A; andS; O S;. The procedureSat i sf yCount s,
cumulatively costO(n|G]). Returning to the main loop of Fi ndAdj Symmet ry andSymet r yCl osur e are detailed
Algorithm 1, observe that the setsand S can be augmentedin Sections V-A, V-B and V-C respectively. Section V-D
in O(n) time whenD is also represented as an arrayrof presents some heuristics which endeavor to increase the
Booleans and4 and S are represented as x n adjacency proportion of7;-symmetric variable pairs that are discovered
matrices. Algorithm 1 is therefore i®(n? + n|G| + |G|*). early on in the execution of the main loop of Algorithm 4.
Interestingly, although this improves on the algorithm of
Mishchenko when set operations are considered, it does AetSatisfy Counts
improve on the naive co-factor computation method [9]][20 A consequence of’;-symmetry, which can also be used
which resides ir0(n?|G|1g(|G])). to detectT’-asymmetry [10], relates the satisfy count of one



positive co-factor of a variable to the satisfy count of d&m@ot an algorithm such as the Floyd-Warshall all-pairs-shortes
Lemma 3. If a Boolean functionf over a set of vari- pe_lth algo_n_thm [29]2 [30]. to_ this 3task. The complexity of
s o ! this transitive algorithm is inO(n°) when A and S are
ables{z1,...,z,} is Ti-symmetric in the paifz;, z;), then : . hi . ¢
Uflowt || = [ Flen | represe_nted as xn ad!acency.matrlces. Eac” iteration o
ri AL the main loop of Algorithm 4 incurs an additional call to
Computing the satisfy counts of all co-factors can be redlizSymret r yCl osur e, which computes the transitive closure,
using a single depth-first traversal of the ROBDD(in|G|) and pushes the overall complexity infa(n* + n|G| + |G|*).
time [10]. Finding the resultant asymmetries additionadly Recall thatSat i sf yCount s andFi ndAdj Synmet ry are
quiresn? comparisons in Algorithm 4, and thus the overaih O(n|G|) and O(|G|) respectively which have no impact

complexity of this sieve i€ (n? + n|G)). on the overall asymptotic complexity. However, althougé th
Floyd-Warshall is attractive because of its simplicitye th
B. Adjacent Symmetries complexity can be reduced 0(n? + n|G| + |G|*), or even

lower, by substituting Floyd-Warshall with an incremer{tai-

The following result follows immediately from Proposi-,. . .
wing ! WS | ately post Iége) transitive closure algorithm [31].

tion 1 and details a special case of symmetry which relat
to variables that are adjacent in the ROBDD ordering:
D. Variable Choice Heuristics

The astute reader may have noticed that the correctness
of Algorithm 4 is not compromised by the order in which
variables are considered in the main loop. One may wonder
therefore if considering variables in a different order speed
up the algorithm. One natural approach is to choose a variabl
x; that maximizes{(x;,z;) ¢ (AUS) Ai < j}|. The ratio-
The force of this result is that the equivalencaale behind this greedy heuristic is to ensure that the oall t
flzi—0,2is1-1 = flei—1,2,.1—0 Can be checked iO(|G|) RenpbveAsymmretry resolves the maximal number of vari-
time for all adjacent variable pairs [20]. In fact Propasitil able pairs whos@&;-symmetry relation is unknown. The dual
leads to a further result that can det@&gtasymmetric variable of this heuristic is to choose a variahtefor which unknowns
pairs that are not necessarily adjacent in the variablerimigte remain which minimize$§{(z;, z;) ¢ (AU S) A4 < j}. Moti-
vation for this heuristic comes from literature [32] on camyp

Corollary 2. An ROBDD f over a set of variables ing signatures for Boolean functions so as to determinetinpu
{z1,...,2,} is Ty-asymmetric in the pailz;,z;) if there 959 P

exists a node in f labeledz; with successor nodes labele orresp_ondence. This is the problem of determining whether

21 anda; wherei41< k< 1 andgle, 0., 1% g he_varlables of one R_OBDD can be reordered so that the re-
T sulting ROBDD is equivalent to another. It has been observed

These non-consecutiVE -asymmetric pairs can be detectedhat if the currently known asymmetry sieves [10], [20] leav

in O(|G|) time. Of course, the firsO(|G]) tactic for en- only a handful of pairs for which a symmetry is unknown, then

riching A and S can only be deployed in conjunctionthese variables are likely to be involved in some symmetry

with Fi ndAsynmet r y; the second tactic is independent ofelationship [32]. Therefore, focusinBenoveAsynmet ry

Corollary 1. An ROBDD f over a set of variables
{z1,...,2,} is Ty-symmetric in the paifz;, x; 1) iff
1) every ROBDD rooted at a node labeled is T;i-
symmetric in(x;, z;+1) and,
2) every path from the root of to a node labeledc;,
passes through a node labelegl

x;—1,x,+0-

Fi ndAsymret ry. on the variable with the least unknowns is likely to discover
Ti-symmetries. We call these two heuristiosax and min
C. Symmetry Closure respectively. It should be pointed out that for both theagise

The following lemma can be obtained by recalling that gcs, a variable can be chosen @(n) time by maintaining

function f remains unchanged under the switching of any pa?r ﬁounter ft?]r te_ach ‘va‘r|ableiAtha; recprd; th_(la_hnumbetr of
of T,-symmetric variables: unknowns, that isl{ (z;, z;) € (AU S) A4 < j}. The counter

for z; is decremented each time a p@i, z;) is added ta4 or
Lemma 4. If a Boolean functionf over a set of variables S. The cumulative overhead of running the heuristic over the
X ={x1,...,2,} is T1-symmetric in the pairgz;, z;) and loop body is inO(n?) which is absorbed into the asymptotic
(xj,z1) then f is alsoT;-symmetric in the paifz;, zy). running time of the algorithm.

This transitivity result provides a way of enriching the set

S, that is, if (z1,2;), (z;,2,) € S then it follows that ~ VI- GENERALIZED ANYTIME SYMMETRY DETECTION
(z;,x) Is also aTi-symmetric pair, hences can be en-  In this section we show how to extend the anytime algorithm
riched with (x;,z;). Further, if (x;,2;) € S,(x;,2x) € A presented in the previous section to also detect the géretal
then it follows that the pai(z;,zs) is Ti-asymmetric, that symmetry types given in Table I. The section presents aserie
is, A can be enriched witl{z;, x)). This follows since if of novel results which detail the structural constraintatth
(xj,zr) is Th-symmetric then by the lemma it follows thatgeneralized symmetries place on an ROBDD. The force of
(z;,x) is Tyr-symmetric, which is a contradiction. Addingthese results is that they justify the construction of asytnyn
those variable pairs tad and S which can be inferred sieves since an ROBDD cannot possess a symmetry if the
through transitivity is not dissimilar to computing therira structural constraints that follow from that symmetry dd no
sitive closure of a binary relation. This motivates adagtinhold. These results also explain how generalized symmetry



detection can be decomposed into a series of passes. &) every path from the root of that does not visit a node
addition, the section presents a number of novel trantitivi labeledz;, visits a nodéeh labeledz; which satisfies the
results of the form, that iff, " (f) and T,7""*(f) hold property thath|, .o = —h|s, 1.

then 7"/ (f) holds whereT), T, and T, denote one of , . .

the 12 generalized symmetry types. These transitivity resuljtr:?:1e f|rst'and second .condmons of Proposﬁpp 2 can be

allow assymetry/symmetry propagation to be inserted MNeEmeeCkaerc\j dmﬂfw‘: :ﬁ;th:Ir:;tjt“ri/eriﬁgtrbg;hcr:r?utl)rga%ne'tcggte d

the passes of any anytime generalized symmetry detection u 3 4-SY| ! .

algorithm. in _O(n|C_¥|) tm;e ove_rall. Detectlngrg an_d Tho-symmetries
Algorithm 5 takes as input an ROBDP and returns the set resides inO(n”|5]) since Proposition 3 implies thaf, and

of triples § = {(i, j, k) | T5"" (f)}. The algorithm is com- Tig-asymmetries can be found by systematically searching
osed of three di’stiynct rgbedur&.ndFast Symet ry(f) through all pairs of variable&:;, z;), checking thaif includes

Feturns a pair(A, S) sufh thatd — '{(Z. k) | mi,;,xj ()}) A a path that neither contains nor ;. These propositions assert

ke K) pand:S‘ = (i, k) T Tw’,;?géj(f) /\’;’C e K} that T3, Ty, Ty andTio-symmetries are surprisingly tractable,

where K — {3,4,9 1_0} Fihrj{dSI owAé mret ry(f) returns and therefore suggest that these symmetries are particular

A y y interesting for those applications where it is not necestar

asetdA C {(ijk ST70% (Y Ak € K'Y where .
K = {1 . g(Ql}J\ Ig |In ank anaEIJcc))gous fashion}to beforeCompute all types of generalized symmetry [10]-{12]

Gener al RenmoveAsynmet ry (f, 4, C) filters a set of pairs
C to return a subset” C C. If the T),-symmetry relationship B. Slow Symmetries
between the variables; and x; is presently unknown then c ting th . lized i |
(j, k) € C. The returned sef”’ C C is precisely those pairs ompuling e remaining generalized symmetries, namely
P T2 , T5,Ts5,Ts,T7,Ts, 711 and Ty, requires more effort. The fol-

C'={(G,k) € C| T (f) Ak € K7}, : . .

' lowing four propositions explain how each of these symmetry
relations can be computed in a series of passes where each
pass computes all the symmetry types for each variaple

Algorithm 5 GeneralizedSymmetricPaing(
(A,S) « FindFast Symet ry(f)

A — AU Fi ndS| owAsymet 1y (f) Proposition _4. An ROBD_D_f over a set of variat_)les
fori=1ton—1do {z1,...,2,} is To-symmetric in the paifz;, z;) andi < j iff
C—{(,k) @5, k) & (AUS)Ni<j} is Th-
D — Gener al RemoveAsymet ry(f.i.C) 1) every RQBDD rooteddat a node labeled is T3
A AU{(i,0 k), (Lik) | (LK) €C\ D} symmetric in(z;, ;) and,
S — SU{(i,l,k),(l,i,k) | (I,k) € D} 2) every path from the root of to a node labeled; passes
return S through a node labeled;.

Like before, the proposition asserts that @ll-symmetries
can be found in two stages. The first stage, a lightweight
A. Fast Symmetries preprocessing step, marks a pair;, ;) as Tx-asymmetric
%iLf contains a path to a node labeleg that does not pass
. rough a node labeled. The second stage, which amounts to
to compute than others. In facty and Ti-symmetries and o e search, examines each node labelethd checks

(T)g a;ng Tlro-symrg\;atlrles gli?nbethcorp%mvsﬂ mt(vrvl'GDr and . Whether the ROBDD rooted at that node fs-asymmetric
(n”|G]) respectively, u g Ihe loflowing fwo propost-;, (xi,x;). The first check is one of a number carried out

tions. The proofs for the results reported in this sectiolgl the call toGener al RenoveAsvnmet rv in the main
are similar in spirit to that of Proposition 1 and thereforqg;p of Algorithm 5. The secondycheck i)é realized in the
for reasons of continuity, are relegated to an accompanyi]rlg1Cti0n Fi nds| owAsymmt ry which precedes the main

technical report [33]. loop. Thus, paradoxically, the first check is applied chtoge
Proposition 2. An ROBDD f over a set of variables ically after the second checleener al RenoveAsynmet ry
{z1,...,2,} is T5-symmetric (respl;-symmetric) in the pair and Fi ndSI owAsynmmet ry also carry out checks to ver-
(xi, ;) andi < j iff ify the first and second conditions of both Propositions 6

1) if whenever an ROBDI occurs inf at a node labeled @1d 7. The simple structure of Proposition 5 pernilis

Interestingly, some types of generalized symmetry areeea:

2; then gl,.o (resp. gl..1) does not contain a node and Tz symmetries to be detected without a preprocess-
labeledz; and ’ ing step; these symmetries are solely detected within the
2) every path from the root of to a node labeled:; passes GeNer al RemoveAsymmet ry procedure.
through a node labeled;. Proposition 5. An ROBDD f over a set of variables
Proposition 3. An ROBDD f over a set of variables {Z1;---%n} i T5-Symmetric (respls-symmetric) in the pair
{z1,...,2,} is Ty-symmetric (respTio-symmetric) in the (x;,z;) andi < j iff every ROBDD rooted at a node labeled
pair (z;,z;) andi < j iff x; Is Ts-symmetric (respIs-symmetric) in(z;, x;).

1) if whenever an ROBDIg occurs inf at a node labeled Proposition 6. An ROBDD f over a set of variables
x; then every path through|., o (resp.g|:,—1) visits {x1,...,z,} is Tr-symmetric (respls-symmetric) in the pair
a nodeh labeledx; such thath|,;o = —h|,,;—1 and, (z;,x;) andi < j iff




1) every ROBDD rooted at a node labeled is Tr-
symmetric (respIs-symmetric) in(x;, z;) and,

2) every path from the root of that does not visit a node
labeledz;, visits a node: labeledz; which satisfies the
property thathl|,,o = —hls, 1.

Proposition 7. An ROBDD f over a set of variables
{z1,...,2,} is Ti1-symmetric (respTiz-symmetric) in the
pair (x;,z;) and¢ < j iff

1) every ROBDD rooted at a node labeled is T7:-
symmetric (respIi2-symmetric) in(z;, ;) and,

2) every path from the root of passes through a node

labeledz;.

The following two lemmata detail structural properties of

ROBDDs that hold in the presence ©§, 1,17, 15,111 and

Algorithm 6 GeneralRemoveAsymmetrgi(i, C)

if C =0V f=trueV f = false then
return C
J < index(f)
if j >4 then
return C
else if j = ¢ then
return Gener al RenoveAsymet ryvar (f|z;—o, flz;—1,C)
else
C « Gener al RemoveAsymet ry (f|.,—o,,C)
return Gener al RenoveAsymet ry (f]z,—1,%,C)

Algorithm 7 GeneralRemoveAsymmetryVag( g1, C)

if go = true Vv go = false then
Je oo

else
j < index(go)

if g1 = true V g; = false then

Ti»-symmetries. The absence of these properties imply that 7 < ©©

these symmetries cannot hold. In the case of Lemma 5, an

else

r < index(g1)

O(n|G|) complexity algorithm can be applied to ascertain if ¢ = ¢v j = r = co then

whether every ROBDD rooted at a node labelgdcontains

return C

a node labeledr;. This result therefore provides a sieve else ifj = then

for Ts and Tg-symmetries that can be incorporated into

Fi ndSl owAsynmretry. A sieve for Tr,7g,1T71 and T1o-

symmetries follows from Lemma 6 since the two cases 0Ofglge

the lemma can both be checked(r{n|G|) time. This is also
implemented withinFi ndSI owAsynmet ry.

Lemma 5. If an ROBDD f over a set of variables
{z1,...,2,} is Ts-symmetric (respls-symmetric) in the pair

(x;,z;) andi < j then every ROBDD rooted at a node labeled

x; contains a node labeled,;.

Lemma 6. If an ROBDD f over a set of variables
{z1,...,2,} is Ty-symmetric (resp.Ts-symmetric, T;-
symmetric andl2-symmetric) in the paifz;, z;) andi < j
then every ROBDD) rooted at a node labeled; satisfies the
property that

1) g contains a node labeled; or,
2) glz;i—0="g

The recursive structure o€ener al RenbveAsymret ry
follows that of RemoveAsynmetry except that the call
Gener al RenobveAsymmet ryVar (f|z,—o, fla;—1,C) lies
at its heartGener al RenoveAsymet r yVar in turn mim-

xi—1-

1, goo, go1, 910, 911) = (4, golz;—0; gola; 1, gilz,—0, g1l —1)
else if j < r then

(1, g0o, go1, 910, g11) < (4, golz;—0, gola;—1, g1, 91)

(1, goo, go1, 910, g11) (7, 9o, 90, g1|zr—0, g1z, 1)
if g1o 7é go1 then
C—C\{({1}
if goo 7é g11 then
C—C\{(2)}
if goo 7é g10 then
C—C\{(5)}
if go1 7& g11 then
C—C\{(L6)}
if g10 7& —go1 then
C—C\{(L,7}
if goo 7& —g11 then
C—C\{(,8)}
if goo 7& —g1o0 then
C—C\{({11)}
if go1 7& —g11 then
C—C\{(12)}
C — Cener al RenoveAsymmet r yVar (goo, 910, C)
return Gener al RemoveAsymret ryVar (goi, g11, C)

C. Generalized Symmetry Propagation

To reduce the cost of each iteration of the main loop of Al-

ics the structure oRenpbveAsynmmet r yVar except that it gorithm 5, one can apply asymmetry/symmetry propagation in

performs co-factor checks fdry, Ts, T, T, T7,Ts, T11 and

the spirit of that employed in Algorithm 4. Tsai al.[22] have

T15-symmetries. Note that th&s, Ty, Ty andTyo-symmetries reported transitivity results for some generalized symiesi
are already completely determined ByndFast Symmet ry  but to fully exploit asymmetry/symmetry propagation these
and hence need not be reconsidered. The complexity ofesults need to be extended to & generalized symmetries.

single call toGener al RenbveAsymmet r yVar is O(|G|2)

One such extension that involvd§ and T3-symmetries is

and since this function can only be invoked a totaj@ftimes presented in the following lemma:

in Algorithm 5 when caching is applied, it follows that th
overall complexity of this procedure i9(|G|*). The prepro-
cessing checks implemented withii ndSI owAsymet ry

for Propositions 2, 4 and 7 all require(n|G|) time whereas

the preprocessing required for Propositions 3 and 6 ta

S.emma 7. If a Boolean functionf over a set of variables
{.131, ..
symmetric in the paix;, 1), then f is T5-symmetric in the

Egir (i, xk).

., Zn} is Ti-symmetric in the pair(x;,z;) and Ts-

O(n2|G]). Algorithm 5 thus resides i®(n2|G|+|G|*) overall. Proof. Suppose 77"*/(f) and T37**(f) hold. Thus



II: Transitivity Results
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f wi—0,2,—1, therefore fl,,—1.,—02,—0 consequence of thg;¥/T¢* entry. In fact three applications

= flei—0.e;-1,2,—0 and i zi—1la;—02,—1 = Ofthe above lemma are needed to establish the correctness of
flai—0,0;1,2,—1- AlSO flo, 020 = flo;—0,2,—1, thus theTy¥/T* entry, as formalised in the following lemma.
f|:rL<—0 ;0,20 — f|:rL<—0 ;0,1 andf':rﬁ—l ;0,250

zi—1,x;<0

Lemma 9. If a Boolean functionf over a set of variables
{z1,...,2,} is T3-symmetric in the pair(z,y) and T%-

Flag—o.2; g Lore—0 = f|“‘“1 23 =02.=0 " symmetric in the pail(y, z), then f is Ty-symmetric in the
- f|7‘1<—1 x 0, ape—1 = Jlz; <—0,x_,<—1,.rk<—1 Hencef x;+—0,21, 0

= flai—0,0,—1 @nd T3 **(f) holds. o Par (2,2).

Proof. SupposeT;*Y(f) and T¥'*(f) hold. By two applica-
Table Il summarizes a collection of lemmata that state io@li tions of Lemma 8 it follows thaly>"(f) and T2 (f) hold.
tional relationships between various generalized symigsetr HenceT:?¥(f) andT¥""(f) hold. By Table Il it follows that

For example, if 7, (f) and T;7"*(f) hold for some 72%(f) holds and by another application of Lemma 8 it
ROBDD f then T’” “r(f) also holds Implicational relation- fo||OWS that 7% (f) holds as required. 0O

ships that have been previously reported [22] are marked
with a 1. Proofs for all the other implicational relationships e conjecture that no implicational symmetry relationship

of Table Il can be found in the accompanying technicdold for the combinations of symmetry that lead to a blank
report [34]. Many of these results are established with fsrod®ntry in the table.

whose structure mirrors that used to substantiate lemma 7With the results of Table Il in place, it is straightforward
The correctness of the remaining results, flows from mutipf©® construct an analogue &nmet ryd osure(4, S) for
applications of the following lemma that states equ,vmcgenerallzed symmetries. The complexity of the generalized
between the generalized symmetries of the fafi'(f) and closure algorithm remain®(n?®), assuming that an incre-

ri—1,x;0,x—1" j<—0,x—0

ij,w(f) for any ROBDD f for variousi, j € {1,...,12}. mental algorlthm is applied. Thus the overall running time
of generalized symmetry detection with asymmetry/symynetr

Lemma 8. propagation i< (n? + n2|G| + |G|*).

1) T79(f) <= T{°(f) andT7(f) <= T7°(f)

2) T,V(f) < T3°(f) andTgY(f) — T3"(f) VII. EXPERIMENTAL RESULTS

3) T:sw’Z(f) = T"°(f) andT%Ez(f) = lelm(f) The anytime algorithm and all its refinements have been

4) T)U(f) = T°(f) and Ty (f) <= T35°(f) implemented using the CUDD [35] Decision Diagram pack-
Proof. For brevity we only consider the positive cases. @€, SO as to assess the efficiency of the anytime approach.

The rationale for this choice of package was that the Extra
TV (f) DD library [36], which implements Mishchenko’s algorithm,
also uses CUDD. The main experiments were performed on
TV (f) an UltraSPARC Illi 900MHz based system, equipped with
16GB RAM, running the Solaris 9 Operating System, using
flycomeo = flyeroeo <= TY(f) get rusage to gauge CPU usage in §econds. The CUF)D
TIV(f) = f|m(_1:y<_0 _ fl./m17y<_1 — pgckage,the Extrallbrary, and quralgonthm were all cdetpi
f|yH)’gW1 _ f|1/4717a:<—1 — TV(f) with the GNU C Compiler version 3.3.0 withG3 enabled.
’ o ] The algorithms were run against a range of MCNC and ISCAS
benchmark circuits of varying size [37], as well as several
The value of the above lemma is that it can be applied aiher benchmarks derived from the SAT literature. All tigsn
show, for example, that th&;"¥/T"Y"* entry of Table Il is a are given in seconds and averaged over four runs.

Tlry(f) <~ f|m<—1,y<—0 = f|m<—0,y<—1 —
f|y<—1,w%0 = f|y%0,m<—1 —

T;’y(f) — f|a:<—0,y<70 = f|w<71,y<—1 <~
f|y<—0,w<70 = f|y<71,:r<—1

I579(f) <= fle—oy—o = flacoy1 <



Il T1-symmetry Experimental Results with (above) and withoedly) variable reordering applied

Circuit [#In[#0ut] X|G|[| [S|]] Read]] Naive] Moller|Mish-GC|[Mish+GC | Any [ Sat] Adj]| Close
alu2 0] 6 192 4] o.01]] 0.01] 001 0.01 001] o001] 0.01] 001] 001
alu4 14| 8| 1099 6 0.01] 005 001 0.01 001| 001| 001 001 001
C1355 41| 32| 65323 0| 5.62|| 49.95 31.93 0.02 009| 213| 1.67| 168 168
C1908 33| 25| 17682 248 2.10| 5.71] 1.89 0.07 012| 064| 042 026/ 020
C2670 233| 140| 8904| 1547|| 1.10| 64.36 13.50 0.32 467 | 284| 265 262 221
C3540 50| 22| 43334 81| 14.00| 3837/ 0.9 0.94 6.84| 3.45| 289 235 199
C432 36| 7| 1475 0| 016 0.64/ 003 0.02 0.02| 002| 001 001 001
C499 41| 32| 101701 0| 3.00/| 77.09 55.86 0.04 009 | 262| 241 242 244
C5315 178| 123| 9434 521|| 0.72| 569 050 0.28 050 | 0.48| 036/ 034 029
C7552 207| 108| 29142 1879|| 7.36|| 366.18 191.69 0.70 6.34| 357| 321 201 268
C880 60| 26| 8753 262| 044/ 520/ 013 0.22 1.01| 0.24| 0.16/ 0.12 0.10
dalu 75| 16| 1728 982| 0.45/ 1.05 0.10 0.06 008| 013| 0.11| 008 0.07
des 256 245 6063|| 1264 0.35 043 021 0.13 0.16 | 0.16| 0.15 0.12/ 0.10
frg2 143| 139| 2339|| 1353 0.1 025 0.7 0.04 0.08| 008| 008 005 004
i10 257| 224| 52811 3746|| 9.49|| 98.13 4.14 2.09| 427.69| 1.87| 154 152 1.7
k2 256 245 3029 338|| 0.04f 079 003 0.07 0.10| 007| 004/ 002 001
pair 173| 137| 8599|| 1910|| 0.60 271 050 0.18 0.62| 048| 036/ 032 028
rot 135 107| 4132|| 364/ 0.28| 2.60] 0.10 0.11 026 039| 034/ 029 023
4863 153| 104| 75549 547|| 87.58| 14.78) 0.80 0.09 128| 050| 032/ 029/ 0.16
$9234.1 247| 250\ 9376 3454|| 2.16| 6.76] 0.76 0.39 146 | 0.87| 0.74 068 0.42
$38584.1  [1464| 1730| 34833| 15629| 13.10| 18.36 1.72 2.89 411| 483| 326| 296 280
too_large 38 3| 2312] 17| 0.15] 1.15 0.04 0.04 020| 003| 002 001 001
simp12 117| 1] 292811 23]|230.61| >7200] 22.19] 1261]  61.96| 55.55| 22.22| 21.81 21.96
homo8 95 1| 110160| 16| 128.91) >7200| 4.39 418/ 134.31| 17.48| 470 4.74| 450
ca016 107| 1| 90033| 26| 33.45|6444.37/2544.87  19.54/  >7200 | 20.19| 17.01| 16.36| 14.10
urquhart425 | 68 1| 45008| 27|l 23.21//3330.311070.31  4.57| >7200| 6.94| 637 6.31] 6.23
rope.0006 61 1| 11066 13| 5.01| 564.39 216.53 040/ 2817 | 1.28| 1.03 0.99 0.98
ferry10 116 1| 3141 38| 6.18|| 140.32 64.45 0.34|  >7200| 0.44| 042 046/ 0.48
gripperl2 | 129] 1| 17035| 43| 165.65 >7200| >7200 7.05| 5365.41| 35.35| 34.89 34.80 36.32
C1355 41] 32| 110675  Of 10.25]] 111.41] 52.68 0.13 0.33] 6.11] 589 590 5091
C1908 33| 25| 30832 248 0.16| 14.95 4.1 0.13 0.30| 1.01| 1.00[ 098 038
C2670 233| 140|9869047| 1547|| 39.19|| >7200|3854.76 907.71  >7200 |187.10 | 161.23 156.32 124.86
C3540 50|  22|4618194| 81| 21.80| >7200| 122.09| 132.72 5488.75| 71.64| 68.23| 66.08 65.04
C432 36| 7| 32151 0| 020 1436 0.38 0.77| 4523 | 0.68| 046 045 045
C499 41| 32| 110675  O|| 0.14| 94.66| 50.72 0.40 045| 529| 497 496 4.96
C880 60| 26| 600998 262| 8.29|| 70454 10.23|  13.90| 2242.11| 7.75| 6.84| 563/ 520
dalu 75| 16| 5128 982| 0.06| 1.43| 0.38 0.12 0.17| 067 | 064 061 034
des 256 245 15209 1264 0.19| 0.73| 0.47 0.15 0.33| 021| 020/ 017 0.11
frg2 143| 139| 6679|| 1353|| 0.04 047/ 005 0.11 019| 009| 008 007 004
i10 257| 224| 150353| 3746|| 0.61||1203.85 30.26 5.89| >7200| 5.61| 512 486 4.12
pair 173| 137| 118066| 1910/ 0.20| 132.46 4.45 6.62| 3550 237 | 218 216/ 2.08
rot 135/ 107| 13565/ 364/ 0.10 12.72] 0.31 0.32 450| 061| 031 0.30] 022
4863 153| 104| 126988| 547|| 2.63|| 20.60| 1.45 5.30 571| 1.41| 108 101 082
$9234.1 247| 250|4434504 3454| 20.14| >7200|1415.88 1407.20  >7200 |183.84 | 158.36) 145.94 141.26
$38584.1  |1464| 1730 150554| 15629 3.70| 337.59 23.01] 16.70] 132.16| 3.12| 3.04) 3.01 2.80
simp12 117] 1] 758330 23| 76.23| >7200[ 139.45) >7200|  >7200 |105.67 | 61.94] 59.87| 57.59
homo8 95 1| 893312 16|l 56.48| >7200| 466.21] 13579  >7200 | 67.79 | 54.99| 50.89 49.00
ca016 107| 1| 861209 26| 60.10|| >7200| 744.55 305.11  >7200 | 72.68 | 59.96| 50.90 50.80
urquhart425 | 68 1|1736705 27|| 5.96| >7200| 974.83 >7200| >7200 | 83.44 | 81.84| 76.48 72.02
rope.0006 61 1| 759039 13|l 3.14| >7200| 225.23 657.74 ~ >7200 | 35.78| 30.76| 30.64| 30.68
ferry10 116| 1| 539419| 38| 88.08|| >7200|2177.43 1866.62  >7200 | 70.34| 69.84| 54.19 53.42
gripper12 | 129| 1| 667877] 43| 50.95| >7200|2604.07 368.50  >7200 |106.32|102.87| 85.43 84.90




Table Il presents the results of these tests, the first foations isO(|G|). Interestingly, the algorithm of Mishchenko
columns of the table give, respectively, the circuit namenn is O(|G|®) in the number of set operations, where each
ber of input variables, number of defined functions (outputset operation will have variable complexity depending, for
and the sum of the number of internal ROBDD nodes acrosstance, on the number of represented symmetry pairs.-More
all outputs (which does not consider sharing between oslfputover, when sets are realised as ZBDDs, the cost of each set
Column|S| records the total number of all;-symmetric pairs operation will also vary due to memoization (caching) effec
found over all the outputs. ColumRead gives the time in and the overheads induced by memory management. This
seconds to read in the benchmark circuit and construct thariability is evident in the columnBlish-GC andMish+GC.
ROBDD. The remaining columns give the runtimes requirethis key difference in the asymptotic complexity explains
to compute allT;-symmetric andl’}-asymmetric pairs. The why, although the running time of the anytime algorithms
first of these,Naive, is the naive method which computesre consistently below 200 secs, and certainly never esceed
all co-factor pairs. (The results of this method were used fohours, that these algorithms are not uniformly faster than
verify the correctness of all subsequent methods.) Thensecdhe algorithm of Mishchenko because of the variability &f it
column,Moller, applies the sieves of Sections V-A and V-BZBDD operations.
to reduce the number of co-factor calculations. The third an Table V presents a comparison between the generalized
fourth columnsMish-GC and Mish+GC, are Mishchenko’'s symmetry algorithm of Zhanget al. [12] and the gener-
implementation of his own algorithm [36] without and withalized anytime approach. Mishchenko’s implementation was
garbage collection enabled. The fifth columAny, is the modified to detectly, T, 77 and Tg-symmetries following
unoptimized anytime algorithm presented in Section IV. Thbe ideas prescribed by Zhamg al. The timings given for
remaining three columnsat, Adj andClose are the times the anytime algorithm reflect the time required to compute
with the optimizations of Sections V-A, V-B and V-C cu-all 12 generalized symmetry types. This algorithm applies
mulatively enabled. The garbage generated by Mishchenkasymmetry/symmetry propagation between iterations of the
implementation stems from its use of ZBDDs to represent setsain loop and uses all sieves described thus far.

Enabling garbage collection has not impact on our algorithm Figure 2 summarizes the outcome of some experiments

The columns labele8at, Adj andCloseof Table Ill suggest that investigate the relationship between the variableceho
that all the optimizations to the basic anytime algorithrheuristics and the proportion of symmetries found earhhin t
are worthwhile, though not essential. Interestingly, catimg  execution of the algorithm. The graphs display the number
transitive closure is not prohibitively expensive even wheof symmetries found against various timeouts for thi@ and
implemented using the sub-optimal Floyd-Warshall al¢ponit max heuristics using the original algorithm as a control. Apart
This is because this algorithm can be implemented effigienfrom the circuits hanoi4 homer08 and rope 0006 (graphs
and straightforwardly with three nested loops. This sigigli 9, 10 and 11) thenin heuristic increases the proportion of
of this optimization suggests that it should be applied isymmetries found early in the execution of the algorithm.
conjunction with the naive method [20]. The rows of the éabln the case ofdp02s02(graph 5) andgripperl2 (graph 8),
above the double lines record the outcomes of the expergnethte difference betweemin and both the control anthax is
when circuits are constructed using dynamic variable ander stark. This suggests that thein heuristic should always be
The so-called automatic variable ordering option providgd applied since it never gives a significant slowdown when the
CUDD was applied using the default settings which periodalgorithm is run to completion and is beneficial in the case of
cally activates the sifting algorithm of Rudell [21]. Thea® early termination. For five of the circuits (graphs 6 to 10 th
beneath the double lines repeat the experiments with ‘ariabumber of symmetries grows consistently with time. Howgver
reordering disabled. This leads to much larger ROBDDs afat other circuits, growth is either more sporadic or biased
therefore constitutes a form of strength test for all aldyonis. towards the latter passes of the symmetry detection akgorit
Those benchmarks not repeated in the bottom section of #ha these circuits, only a fraction of symmetry pairs could
table correspond to those circuits which are the same sibe, recovered if these algorithms were terminated premigiture
with and without variable reordering. This is why it is important that anytime generality should no

Table Il can only be meaningfully interpreted in conjuncbe achieved at the expense of efficiency.
tion with asymptotic complexity results. Complexity rasul  Finally, one may wonder how the performance of the
such as the assertion that the basic anytime algorithmea®sidlassical and generalized anytime algorithms are affebted
in O(|G|*) assuming: < |G|, are ultimately statements abouthe underlying architecture. Table IV thus summarises the
scalability; such results predict how the running time of aresults of some timing experiments performed with Intele2or
algorithm will grow with the size of the input ROBDD. TheseDuo 2.33GHZ PC (using just one core), equipped with 2GB
statements have particular weight when combined with tlké RAM, running MacOSX. The Intel is faster than the
experimental results of Table Il that gauge the asymptotiditraSPARC, but the memory limit of 2GB prevents some
constants. For instance, if the basic anytime terminatésiwi circuits (including all those for the larger SAT benchmarks
an acceptable time for very large ROBDDs then (no mattéom being constructed. Thdish andZhang columns detail
whether the ROBDD has been created with or without siftingye timings for the algorithms of Mishchenko and Zhang where
and irrespective of the number of symmetries inferred), tlgarbage collection is disenabled. As before, the runnimgdi
algorithm will terminate within an acceptable time for steal of the ZBDDs algorithms is more variable than those of the
ROBDDs. This is because the total number of atomic opeanytime algorithms. It should be noted the relative timinf§is



IV: Generalized Symmetry Experimental Results

with variable reordering without variable reordering
Circuit S| || Naive | Zhang-GC | Anytime Naive | Zhang-GC | Anytime
alu2 29 0.01 0.01 0.01 0.01 0.01 0.01
alu4 35 0.05 0.01 0.01 0.07 0.01 0.01
C1908 2160 9.00 0.50 1.85 24.24 1.34 3.29
C2670 5805 || 106.96 1.33 2.96 >7200 1106.96 102.69
C3540 1892 || 72.74 5.47 5.43 >7200 162.91 186.32
C432 212 1.03 0.04 0.12 29.37 95.24 2.93
C499 256 || 136.53 5.52 16.50 || 169.79 1.45 16.93
C5315 12515 || 13.13 2.25 1.90 - - -
C7552 13010 || 801.86 12.72 22.49 - - -
C880 1759 9.67 0.62 1.13 || 1309.88 42.39 44.52
dalu 5010 1.65 0.19 0.22 2.49 1.18 1.30
des 8917 0.64 1.69 0.43 1.43 4.80 0.70
frg2 11556 0.40 0.41 0.19 1.00 0.98 0.30
i10 40511 || 174.88 27.72 19.81 || 1802.24 63.73 70.29
k2 4750 1.26 0.34 0.14 1.38 0.32 0.15
pair 15949 4.56 1.53 121 219.76 64.27 9.10
rot 5948 4.38 0.78 1.05 25.67 10.66 2.57
s635 18451 0.18 0.19 0.05 0.18 0.18 0.03
s$838.1 18588 0.42 0.20 0.05 0.38 0.15 0.06
s1196 879 0.25 0.05 0.04 0.42 0.17 0.08
51269 912 1.13 0.24 0.24 1.67 0.41 0.32
51423 20947 6.88 1.19 1.10 30.01 2.90 1.81
s3271 3577 0.23 0.27 0.08 2.46 1.15 0.42
54863 3825 | 25.25 14.20 4.36 33.10 15.20 5.42
s9234.1 22410| 13.53 3.78 1.12 >7200 >7200 287.62
s$38584.1 136537| 30.44 246.37 2.59 501.34 576.39 10.30
too_large 502 2.03 0.21 0.15 1.87 0.39 0.15
simp12 135 || >7200 70.33 202.89 >7200 >7200 304.21
hom08 108 || >7200 71.44 113.58 >7200 482.30 281.57
ca0l6 147 || >7200 198.45 10.78 >7200 305.11 72.68
urquhart425 184 || >7200 >7200 67.70 >7200 >7200 83.44
rope.0006 76 || 781.21 17.20 14.93 >7200 657.74 35.78
ferry10 174 || 210.82 3050.82 3.91 >7200 3146.64 365.93
gripperl2 220 || >7200 59.98 247.64 >7200 673.09 587.28

the algorithms may change even between Intel machines, digversals. This explains why anytime generality does eetin

to different memory speeds and caching behaviour. to compromise efficiency.
With a view to the future, the iterative nature of the anytime
VIIl. DI1SCUSSION algorithms proposed in this paper make them good candidates

{Pr parallel evaluation on the 8 and 16 core processors that
aYe predicated to emerge over the next 5 years. Although the
speedups achieved by parallel evaluation of BDD operations

airs of symmetric variables. It is important to apprecthtst ‘have often been modest [38], the weak coupling between
b y ' P bp the iterations of the main loop of the symmetry detection

there is no obvious way to re-engineer Mishchenko'’s alborit . : . .
to use a static adjacency matrix. This is because Mishchenk%lgomhms the property that yields to anytime execution

algorithm is a bottom-up, divide-and-conquer algorithratth also leads to weakly coupled parallel execution.

derives the solution to a problem by obtaining, and combin-

ing, the solutions to several sub-problems. Mishchenkq [17 ACKNOWLEDGMENTS

p 1590] points out that caching of the answers to these sub-

problems is required to reduce the computational complexit We thank Arnaud Gotlieb, Peter Schachte and Har-
from exponential to polynomial yet this requires multipktal ald Sendergaard for discussions on ROBDDs, Jin Zhang for
structures to be maintained. By contrast, the anytime ampro clarifying details of Mishchenko’s algorithm, and the ageon
merely has to mark nodes as visited in any of the ROBDMous reviewers for their insightful comments and ideas.

This paper presents a class of novel anytime symme
detection algorithms. The tractability of these algorithstem
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V: Classical and Generalized Symmetry Timing Experimemispo Intel

Classical Generalized
with reordering | without reordering with reordering || without reordering
Circuit || Naive| Méller | Mish | Close|| Naive| Méller | Mish | Close|| Naive| Zhang| Close|| Naive| Zhang] Close
alu2 0.01 0.01| 0.01] o0.01 0.01 0.01| 0.01| 0.01})] 0.01f 0.01f o0.01 0.01 0.01| 0.01
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k2 0.37 0.01| 0.03| 0.01 0.36 0.02( 0.04| 0.01})] 0.50{ 0.08| 0.05 0.50 0.08( 0.05
pair 1.05 0.18| 0.12| 0.08|| 46.22 1.47| 5.01] 0.51f 1.67| 0.38| 0.40|| 73.58| 15.54| 2.96
rot 1.05 0.03| 0.03| 0.03 6.68 0.13| 0.12| 0.07|] 1.70{ 0.18| 0.23 9.02 2.40| 0.86
s635 0.03 0.02| 0.04| 0.01 0.04| 0.02| 0.05| 0.01|| 0.05| 0.04| 0.04 0.05 0.04( 0.04
s838.1 0.07 0.02| 0.04| 0.01 0.08 0.02| 0.05| 0.01})] 0.10{ 0.04| 0.05 0.12 0.04 0.05
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